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Abstract

The least-squares finite dement method (LSFEM) is applied to dectro-

magnetic scattering and radar cross section (RCS) calculations. In contrast

to most existing numerical approaches, in which divergence-free constraints

are omitted, the LSFEM directly incorporates two divergence equations in

the discretization process. The importance of including the divergence equa-

tions is demonstrated by showing that otherwise spurious solutions with large

divergence occur near the scatterers. The LSFEM is based on unstructured

grids and possesses full flexibility in handling complex geometry and local re-
finement. Moreover, the LSFEM does not require any special handling, such

as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Im-

plicit time discretization is used and the scheme is unconditionally stable. By

using a matrix-free iterative method, the computational cost and memory re-

quirement for the present scheme is competitive with other approaches. The

accuracy of the LSFEM is verified by several benchmark test problems.

1 Introduction

The most widely used numerical method for solving the time-dependent Maxwell

equations has been the finite-difference time-domain (FDTD) scheme developed by
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Yee [44], and extensively utilized and refined by Taliove et al. [38] and Kunz and

Luebbers [21], as well as others (see a recent survey by Shlager and Schneider [35]).

In the FDTD, only two Maxwell curl equations are solved by using the explicit

time-marching scheme and the central difference approximation. According to Yee's

scheme, the electric and magnetic fields are located at different nodes and computed

alternatively in time. In other words, the computational mesh for the FDTD has

to be structured, and staggered in both time and space to prevent an oscillatory

solution from developing as the calculations proceed.

The numerical techniques developed in computational fluid dynamics, based on the

conservation laws, have also been applied to solve the time-dependent Maxwell curl

equations, including finite-difference (FDTD), finite volume (FVTD) and finite ele-

ment methods (FEM). All these approaches require some sophisticated treatment,

such as upwinding with characteristic-based flux-differencing by Shankar et al. [34]

and Shang [31], staggered grids with artificial dissipation by Noack and Anderson

[28], or the Taylor-Galerkin method with flux corrected transport by Ambrosiano et

al. [2]. It should also be noted that, only for high-speed compressible flow problems,

in which shocks occur due to the nonlinearity of the aerodynamics equations, the

conservation form is more appropriate, since this formulation often provides a better

prediction of the location and strength of the shocks. However, the Maxwell equa-

tions in electromagnetics are linear. Except at material interfaces, the solution for

such a system of equations is C Ocontinuous, i.e., it does not contain sharp, shock-like

discontinuities. Therefore, the numerical simulation of problems in computational

electromagnetics should not have to resort to the conservation form of equations

and the above-mentioned complicated techniques which are closely associated with

shock-capturing.

The FEM has become the dominate method for numerical solution of problems in

static electromagnetics, eddy currents and waveguides, see, e.g., Silvester and Pelosi

[36]. However, application of the node-based FEM to time dependent microwave

analysis is rare. Mei et al. [7], Madsen and Ziolkowski [23], Choi et al. [10], Wong

et al. [42] and Morgan et al. [25] are among the few papers which can be found in

this regard.

In all the above mentioned time-domain approaches, only two curl equations are

solved, and the divergence equations are neglected. For frequency-domain computa-

tion, such as numerical simulation of waveguide and eddy current problems, it is well

known that if the divergence-free constraint is neither forced nor implied, spurious
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modes occur and they give particularly high values of V. B, see e.g., Rahman et al.

[30], Davies [12], Jin [19] and references therein. However, very few have realized

that ignoring the divergence equations in the time-domain computation also leads

to spurious solutions. Wu and Jiang [43] first reported some evidence that clearly

shows the significant violation of the divergence-free condition near the boundary of

scatters in the solutions of the curl equations only. Kangro and Nicolaides [27] also

found that time marching solutions of the Maxwell curl equations are contaminated

by spurious stationary components and gave a simple technique to remove them.

Indeed, it is commonly believed that the divergence-free constrains in the Maxwell

equations are redundant, see for example, Kunz and Luebbers ([21], pg. 11). This is

usually attributed to the following consideration: taking the divergence of the Fara-

day and Ampere laws, one finds that these divergence-free conditions are satisfied for

all time if they are satisfied initially. However, it is not easy to satisfy them initially

by use of the conventional methods, since the inclusion of them will make the system

of partial differential equations "overspecified" or "overdetermined", i.e., there will

be more equations than unknowns. It is common practice to assume that the initial

field intensities are zero throughout the domain, and that the boundary conditions

on the surface of the scatterer are correctly given. In this case, the divergence-free

condition is significantly violated near the scatterer surface in the first time step

of computation. Therefore, there is no guarantee that the computed fields will be

divergence-free. However, in many scattered field calculations no attention was di-

rected to the verification of whether the computed field intensities actually satisfied

divergence-free conditions. A few exceptions to this are the work by Shang and

Gaitonde [32] and by Ambrosiano, et al. [2], in which the values of the divergence

of the computed field were numerically examined. It is not difficult to prove that

divergence-free conditions are often violated. For example, for two-dimensional TM

wave problems, one just needs to show the scattered Hz and H_ contours. Unfor-

tunately, such results are rarely found in computational electromagnetics literature.

An exception is the paper by Vinh et al. [40]. In Figs. 2-b and 2-c of that paper,

a non-physical solution near the circular cylinder can clearly be observed. Such

spurious solutions are a direct result of neglecting the divergence equations, as will

be further demonstrated in Section 4.4 of the current report.

It should be mentioned that Assous et al. [3], followed by Sonnendriicker et al. [37],

fully realized the importance of the divergence equations in the time-domain Maxwell

equations and correctly worked with second-order wave equations. For a special case,

they supplemented two divergence equations and an additional boundary condition



to the curl-curl equations. They introduced Lagrange multipliers (which are identical

to the "dummy" variables used by the authors for other reason, see [18] ) associated

to the divergence constrains and reformulated the full Maxwell equations as a con-

strained variational problem. Then they applied the well-developed mixed Galerkin

finite element method in fluid mechanics with the use of non-equal-order elements

to solve the problem. This method was one of mathematically sohd approaches to

deal with the time-domain Maxwell equations.

Boyse and Seidl [5] also realized that node-based methods based on the double

curl equations suffers from spurious modes. They pointed out that such a spurious

solution is accompanied by ill-conditioned finite element matrices, non-convergent

iterative methods, and gross errors in the field calculation. They proposed a hy-

brid finite element method (HFEM) which combines the node-based FEM and the

method of moments (MOM). They used a scalar and vector potential formulation

which eliminates spurious solutions. Moreover, the method based on the Helmholtz

equation, such as the one used by Bristeau et al. [6] and Dabaghi [11], is also free

of spurious modes.

The edge element method [26] is becoming popular for the time domain calculation.

The author's opinion regarding edge elements is expressed in [18], and thus will not

be repeated here.

Recently, Jiang et al. [15, 18] pointed out that:

.

.

.

the principal part, which consists of the first-derivative terms, of the full

Maxwell equations in their static, time-harmonic and time-discretized forms,

contains two div-curl systems;

by introducing a "dummy" variable (this treatment was first proposed by

Chang and Gunzburger [9]) which is identically zero, it can be shown that the

div-curl system is elliptic and properly determined, i.e., it is not "overdeter-

mined". Consequently the full Maxwell equations are not "overdetermined",

and the divergence equations are not redundant;

the inclusion of the divergence-free constrains is necessary m to guarantee the

uniqueness of the solution in stationary cases, to improve the accuracy of the

numerical solution in time-varying cases, and to exclude an infinite degenerate

eigenvalue in time-harmonic cases;
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4. the satisfaction of the divergenceequations can be made easyby using the

least-squares method.

The objectives of this paper are (1) to provide an implicit node-based LSFEM for

numerical solution of time-dependent full Maxwell equations; (2) to demonstrate

that the divergence equations should not be disregarded for time-domain problems;

and (3) to supplement our previous paper [lS] with time-dependent examples.

The LSFEM is based on the minimization of the L2 norm of the residuals of first-

order systems. As the name implies, the spatial discretization is achieved by using

the finite element method. The LSFEM is a universal method for numerical solution

of all types of partial differential equations. Further information on the LSFEM can

be found in Sochev and Gunzburger [4], Fix and Rose [13], Jiang et al. [14], Jiang

and PovineUi [16, 17], Krizek and Neittaanmaki [20] and Lager and Mur [22] among

others.

The necessity of implicit schemes for the approximate solution of Maxwell equations

have been clearly explained by Adam et al. [1] and Monk [24]. The attraction of

implicit time marching schemes is the avoidance of unnecessarily small time steps

required by explicit schemes due to the presence of a few small elements in the mesh.

The implicit scheme presented in this paper is also inexpensive, since the LSFEM

always leads to a symmetric positive definite system of algebraic equations which

can be effectively solved by a matrix-free conjugate gradient method. For scattering

problems, only a few iterations axe needed to advance one time step (more details

are provided in Section 3).

In the next section the governing equations and the associated boundary conditions

will be presented in detail. The Maxwell equations axe naturally of first order and

are thus particularly suitable for the LSFEM. The governing equations are first dis-

cretized in time using the Crank-Nicolson scheme, then the LSFEM is applied to

obtain numerical solutions. The divergence-free conditions are incorporated in the

least-squares functional. The discretization procedure is elaborated in Section 3.

It will become apparent that the present scheme does not require any special tech-

niques, such as the use of a staggered grid, non-equal-order elements and upwinding,

thus, it can be implemented into any existing finite element code in a straight for-

ward manner. The description of the test cases and the numerical results are given

in Section 4. Three examples are shown. The first is the polarization by a perfectly

conducting circular cylinder at various incident wavelengthes for both transverse-



electric (TE) and transverse-magnetic (TM) waves. The other tests considered axe

the scattering by a square cylinder and a NACA0012 airfoil. In order to illustrate

the importance of the inclusion of divergence-free equations, for the circular cylin-

der problem, the results of the LSFEM based on the full Maxwell equations are

compared with those based on the solution of only the two curl equations, which

clearly indicate the occurrence of spurious solutions with large divergence near the

scatterers when the divergence-free constraints axe neglected. The contours of the

spurious solutions observed here also closely resemble those produced by a FD-TD

approach [40].

2 Governing Equations

2.1 The Maxwell Equations

In this paper, the time-dependent Maxwell Equations in free space are of interest,

which axe written as:

V • E = 0, Gauss' electric law (1)

V- H = 0, Gauss' magnetic law (2)

eEt - V x H = 0, Ampere's law (3)

pHt+ V x E = 0, Faxaday's law (4)

where E and H are intensities of the electric and magnetic fields respectively; and the

physical constants s and p are the dielectric permittivity and magnetic permeability

of free space.

We note that there are eight equations and six unknown vaxiables in Eqs. (1-4).

It has been shown by Jiang et al. [18] that these systems axe not overdetermined

and that the divergence equations, Eqs. (1) and (2), axe not redundant and can be

satisfied by the least-squaxes method.

The objective is to determine the scattered field due to the existence of perfect

conducting bodies exposed to plane incident waves in free space. For such cases the

field intensity variables are conveniently split into those of the incident field and of

the scattered field, such as

E = E' + E', (s)



and H = H i+H', (6)

where the superscript "i" denotes the incident field; and "s" denotes the scattered

field.

By using the above scattered formulation, the incident waves are allowed to prop-

agate in their analytical form. The scattered waves are determined by solving the

Maxwell equations with appropriate boundary conditions on the surface of the scat-

terer and in the fax-field.

2.2 Boundary Conditions

On the surface of a perfectly conducting body, the tangential components of the

electric intensity and the normal component of the magnetic intensity are both

zero, i.e.,

n × E = 0 and n-H = 0, (7)

where n is the outward directed surface normal.

When a scattered field formulation is used, the above becomes:

n × E" = -n × E i and n-H" = -n.H i . (8)

Since the Maxwell equations are now solved in a finite domain, proper far-field

boundary conditions have to be applied to ensure that waves will not artificially

reflect back and contaminate the near-field solution. Here we adopt the following

absorbing boundary condition:

1a¢ a¢
c0t (9)

where n is the outward directed normal of the far-field boundary, ¢ is any component

of E" and H _, and c = 1/v/_ is the wave velocity. This absorbing boundary

condition can be easily implemented in the current version of our general-purpose

LSFEM code.

It should be noted that in electromagnetic scattering problems normally only the

solution in the near-field is of interest. Indeed the radar cross section (RCS) calcu-

lation requires only the field intensities on the surface of the scatterer (see Section
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4). Because the absorbing boundary condition given in Eq. (9) is only an approxi-

mation of the true absorbing boundary condition, the computational domain needs

to be larger than those using higher-order absorbing conditions. However, at the

fax-field it is only required that the waves propagate out and do not reflect back to

contaminate the near field solutions, the accuracy of the solution there is of no inter-

est. For this reason it is most efficient to refine the mesh locally near the surface of

the scatterer and to use a coarse mesh in the far-field. The use of such non-uniform

grids is easily accommodated in the present scheme since the calculation is carried

out totally on an unstructured mesh. Due to the use of a non-uniform grid and large

elements near the far-field boundary, the elements placed in the part of the com-

putational domain fax from the scatterer surface represent only a small proportion

of the total element number. Thus the present approach still provides a very good

approximation of the field variables while maintaining efficiency. We will later show

in Section 4 that satisfactory results axe obtained using such non-uniform meshes.

We remark that this refinement strategy is not new. Ambrosiano et al. [2] and Vinh

et al. [40] have used grids with large size variation and obtained satisfactory RCS.

We also want to emphasize that this concept of local refinement differs from that

based on a uniform distribution of error, which is widely used in solid mechanics

and other fields.

2.3 Transverse-Magnetic (TM) and Transverse-Electric (TE)

Forms in Two Dimensions

If the electromagnetic fields are two-dimensional, all derivatives with respect to the

third dimension become zero, and some components of the field intensity variables

vanish. There exist two sets of distinct modes, that is, the Transverse-Magnetic

(TM) mode and Transverse-Electric (TE) mode.

For TM waves, we have

= O,E,= O,E, = O. (lO)

The governing equations, Eqs. (1-4), become:

OE, OH, OH,
e--- --+-- =0, (11)

cot Ox Oy

OH. OE_

+ = o, (121

8



OH_ OE_ -o, (13)
# Ot Ox

OH, OH_ =
0-7 + oy o. (14)

Whereas for TE waves,

E_=O,H. =O,H,=O, (15)

and the governing equations are simplified as:

OHz OE_
_--_+ Ox

OE_ OH_
g-

Ot

OEy

_--d-
OE_
Ox

OE,
-0, (16)

oy

-0, (17)
Oy

OH_
+ & 0, (18)

OE_

--+ o-7=0. (19)

3 Discretization of the Governing Equations

Equations (1-4) axe first discretized in time, using the Crank-Nicolson scheme. This

scheme provides second order accuracy in time and is known to be nondissipative

when used in conjunction with central space differences. Although this scheme is

unconditionally stable and thus poses no limitation on the time step, the dispersive

error becomes large if very large time step is used. Thus, caxe should be taken when

choosing the size of the time step. To maintain the accuracy in the time domain,

we typically use a time step corresponding to a CFL number between 1 and 2 at

the smallest element.

After applying time discretization to Eqs. (1-4), we have,

En+l _ E n
g

At

H_+I _ H _

# At

V.E "+1 = 0 (20)

v. H _+1 = o (21)

1 H,,+I) (22)_Vx (H"+ =0

1-V E '_+') (23)+ 2 x (E _ + = 0
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where the superscript n denotes the n th time step.

Equations (20-23) can be rewritten into a compact matrix form as:

0u 0u 0u

Au + Alb-- z+ A2 - V+ A3 z = f (24)

where

0

0

0
A=

0

0

0

0

A2 --

'E_+l 1E_ +I

E_ +1
U= +i , f=

Hi .

H_,+ I

• H, J

0 0 0 0

0 0 0

0 0 0

_ 0 0

0 e_ 0
1

0 0 #_
0 0 0

0 0 0

0 1 0 0 0

0 0 0 0 1

0 0000 -½

0 0000
1

0 00 _ 0
1

0 0 _ 00
0 0000

10000

0

0 0

0 0

0 0

0 0

0 0

#! 0
At 1
0 #Xi

0

0

0

0

0

0

0

0

0

-- g Atk ay a, ] +

-- g At

1 oH=_ m_._
\ oz e_ ) + e At

\ Oz -- O= ] + At

k a= av J + Pat

, AI =

0

0

0

0

0

0
1

0

A3 =

1

0

0

0

0

0

0

0

0

0

0

0

0
1

0

0

0 0

0 0

0 0

0 0

0 0

0 0
1

0 -5
1

0

1 0

0 0

0 0
1

0 -_
0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0-½
0 0

0 0

0 0

0 0

0 1
1
g 0
0 0

0 0

0 0

0 0

0 0

0

0

0
1

0

0

0

0

(25)

The two-dimensional TM and TE cases are presented in the same form, with the

corresponding zero terms dropped•

Eq. (24) is then discretized in space following the standard LSFEM procedure [16].

This results in a set of algebraic equations which can be written as:

KU = F (26)
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In the above, it is implied that the following standard finite element approximation

to the unknown variables u has already been introduced, i.e.,

u ,_ fi = NU (27)

where fi is the finite element approximation to u and U are the nodal values; N are

the finite element shape functions.

The matrix K in Eq. (26) is defined by the matrices A and A_ in Eq.

shape functions N in Eq. (27) as:

in which

(24) and

K = fn [L(N)]T L(N)d_ (28)

L(N) = AN + _ A,N,_
i----1,3

and [L(N)] w denotes the transpose of the matrix L(N); G is the domain of the

problem.

The right hand side vector in Eq. (26) is defined by:

F =/a [L(N)]T fd_2

where f is the right hand side of equation (24).

(29)

At this stage it becomes clear that once the governing equation set is written in the

form of the standard first-order system, i.e., Eq. (24), the LSFEM can be easily

incorporated into any existing finite element code in a straight forward manner.

One advantage of using the LSFEM is that the computer code can be constructed

in a general-purpose setting for the system of equations in Eq. (24) in such a way

that the only required programming for application to a new problem is to write a

subroutine to supply the matrices A, Ai and f, therefore the tedious work is reduced

to a minimum.

We have used a Jacobi-preconditioned conjugate gradient method to solve the re-

sulting algebraic equation system, Eq. (26). By using this method, the iterations

can be performed in such a matrix-free manner that there is no need to assemble

the global matrix K or to form the element matrices [8]. This has greatly reduced

the requirement for computer memory. We have found that five conjugate gradient

iterations are enough to guarantee the accuracy of the solution in our calculations.
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The use of such a small number of iterations can be attributed to the fact that

when the time step is small (corresponding to a CFL number between 1 and 2), the

solution in the previous time step serves as a very good initial guess for the next

step, thus the conjugate gradient method needs fewer iterations than the case when

a larger time step is used. Therefore, although the current method takes the form of

an implicit method, its computational speed is competitive with an explicit method.

4 Numerical Examples

Several test cases of the scattering of a plane incident wave by perfect conduct-

ing bodies will be presented. Since the purpose of this paper is to validate the

present scheme and show the importance of the divergence equations, the numerical

examples will be confined to two dimensional problems. We believe these cases suf-

ficiently demonstrate our view points. We have successfully carried out preliminary

calculations for three dimensional problems and have recently reported these results

[43].

The incident sinusoidal wave is given by:

E z'i = Eo sin k(x cos a + y sin a - ct),

for TM case; and

E _" sin a
HZ, i _

pc

S z'i cos o_
Hy, i _ --

_C

H z'i -- Ho sin k(z cos a + y sin a - ct),

H z,i sin a
S_, _ =

gc

H z'i cos a
Ey,i -.

gc

for TE case. Here c is the wave velocity defined in Section 2; k is the wave number;

a is the angle of incidence.

The numerical results will be presented in terms of the surface current (for TM

case only) and radar cross section (RCS). The calculation of these requires the field
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variables in the frequency domain, thus a Fourier transform is performed to transfer

the field variables from the time domain to the frequency domain.

The surface current J_ for TM case is defined as

j_ = In x Ht[
IH,I '

where Hi and Ht are the incident and total magnetic fields in the frequency domain,

respectively.

The radar cross section (RCS) for TM wave, SrM , is defined as:

s.M(o)= nm2 -p , (30)
_oo E_

where E_* and E_ are the scattered and incident electric fields, respectively, in the

frequency domain; p is the distance from the center of the scattering object; and

8 is the angle of observation. Note that the calculation of SrM from the above

expression requires knowledge of E," at an infinite distance from the scatterer. This

is not available since the Maxwell equations are solved in a finite domain. However,

the far-field solution can be obtained from the distribution on a near-field surface

(the most convenient one being the surface of the scatterer) by a transformation

using Green's function, as described by Shankar et al. [33]. This transformation is

adopted in this paper to obtain the RCS.

For TE wave, the RCS Srg is defined as:

STE(8) = lira 2_rp
p----_oo H;(P,e)[=H,' " (31)

The calculation of Sr_ follows the same procedure as TM cases.

Bilinear quadrilateral elements for all variables are used in all cases. The meshes

are generated using the unstructured mesh generator developed by Zhu et ai. [45],

based on the advancing front technique of Peraire et al. [29].

4.1 Circular Cylinder

The first example deals with a scattering field due to a circular perfect conducting

circular cylinder. Both TM and TE cases at various wavelengthes are considered.
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The definition of the problem is given in Fig. 1. This problem allows an analytical

solution in a series form, see, e.g., Umashankar and Taflove [39]. Due to the sym-

metry of this problem, only a half of the domain is used. The computational mesh

consists of 2538 nodes and 2435 elements, with 142 divisions on the cylinder surface

(Fig. 2). Figs. 3-4 show the calculated RCS. Fig. 5 shows the calculated surface

current for TM cases and compares the LSFEM results with the analytical solutions

which are calculated from the series form presented in [39] using Mathematica [41].

The instantaneous distributions of the scattered field variables are shown in Figs.

6-7.

4.2 Square Cylinder

The second example concerns scattering by a square cylinder defined in Fig. 8.

The TM case with ka = 1 is considered. The computational mesh consists of 2749

bilinear quadrilateral elements with 2874 nodes (Fig. 9). Fig. 10 shows the surface

current distribution. Comparison is made with the results by Shankar et al. [34]

and that obtained by Umashankar and Taflove [39] using the method of moments

(MOM). The instantaneous Ez contours are shown in Fig. 11.

4.3 NACA0012 Airfoil

Preliminary results are presented here for two cases of scattered TM wave due to a

NACA0012 airfoil (Fig. 12). The angles of incidence are 0 and 90 degrees; and the

values of ka are 10 and 107r, respectively. Fig. 13 shows the computational mesh,

which consists of 1782 bilinear elements and 1912 nodes. There are 156 divisions on

the surface of the airfoil. Fig. 14 shows the contours of Ez for the 0 degree incidence

case. Figs. 15 and 16 show the computed RCS. The case of 90 degree incidence is

compared with those by Shankar et al. [34] and Vinh et al. [40]. Generally, fair

agreement is observed. Note that we have used a very coarse mesh and a very small

domain.
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4.4 Importance of the Divergence Equations

To illustrate the influence of the inclusion of divergence equations, we present here

a comparison of two groups of numerical solutions, both obtained by using the

LSFEM: the first group is obtained by solving the full Maxwell equations, while the

second group is obtained by solving solely the two curl equations. Here the case of

TM waves scattered by a circular cylinder is considered. The values of ka used here

are ka = 1 and/ca -- 10. Fig. 17 shows a comparison of the contours of the field

variables for ka -- 1 between the group 1 and the group 2. It is clearly revealed

that without enforcing the divergence condition significant spurious patterns exist

for Hz and Hy near the surface. Further calculation shows that indeed the group 2

solution possesses very large divergence of H in the vicinity of the scatterer surface.

The absolute value of V • H reaches its man, hum of 21.28 in an element adjacent

to the surface. On the other hand, the maximum value of V • H for the group 1 is

0.054, which occurs near the outer boundary. The divergence-free condition for E

is automatically satisfied, therefore almost identical Ez distributions are obtained

with the two formulations. Fig. 18 shows the field variables for ka -- 10. Again

a non-physical solution is found for the group 2 solution near the surface. These

non-physical patterns are similar to those in Figs. 2-b and 2-c of [40].

We should remark here that although group 1 and group 2 solutions differ signifi-

ca.ntly, very little difference was observed in the RCS calculations based on the two

solutions. This is due to the fact that the erroneous part of the solution is static,

and the static field does not radiate. Definitely, the erroneous solutions of the field

intensities caused by the neglect of the divergence conditions cannot be accepted, for

example, in plasma computations and in the computation of impedance in digital

circuits and electronic packaging.

5 Concluding Remarks

A node-based least-squares finite element method has been presented for the time-

dependent MaxweU equations for scattering problems. Divergence-free conditions

have been included in the least-squares functional thus eliminating the existence

of spurious modes. This technique is also expected to be useful for the solution of

Vlasov-Maxwell equations in plasma physics and the simulation of magnetohydrody-

namics (MHD), and for the modeling of microwave integrated circuit components.
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The accuracy of the scheme has been verified by various benchmark tests. The

computation is carried out on a totally unstructured mesh which has a rather large

distribution of grid sizes. This provides a great amount of flexibility in dealing with

complex geometries. The scheme is implicit and unconditionally stable, therefore,

it offers significant advantages in handling electromagnetic problems whose element

size varies several orders of magnitude across the problem domain. In those situa-

tions the time step will no longer be determined by the smallest size as in explicit

schemes. Although this method is implicit, due to the use of the matrix-free con-

jugate gradient method, there is no matrix inversion, and thus the computational

cost and memory requirements are competitive with explicit approaches.

In this report, we have demonstrated that the omission of the divergence equations in

the numerical procedure produces non-physical solutions for scattered field problems,

we have therefore shown that the common belief that the divergence equations are

redundant is a serious misconception. The possibility of producing spurious solutions

from time-domain methods should not be overlooked, even though it does not affect

the computed RCS.
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Figure 1 Scattering by a circular cylinder: problem definition

Figure 2 Scattering by a circular cylinder: finite element mesh
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Figure 8 Scattering by a square cylinder: problem definition

Figure 9 Scattering by a square cylinder: finite element mesh
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Figure 13 Scattering by a NACA0012 aerofoil: finite element mesh

Figure 14 Scattered Ez contours for the NACA0012 aerofoil
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